Endovascular Arch Repair

Jody Thiele, RN, MSN, APRN, AGACNP, RNFA

Cardiothoracic and Vascular Surgery NP

Department of Cardiothoracic and Vascular Surgery McGovern Medical School at UTHealth Houston, Texas / USA

Department of Cardiothoracic & Vascular Surgery

Arch Landing zones

CLINICAL PRACTICE GUIDELINE

2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease

Editor's Choice — Current Options and Recommendations for the Treatment of Thoracic Aortic Pathologies Involving the Aortic Arch: An Expert Consensus Document of the European Association for Cardio-Thoracic Surgery (EACTS) & the European Society for Vascular Surgery (ESVS)

Recommendation	Class	Level
 Decision-making for the treatment of aortic arch pathologies by an aortic team is recommended 	I.	с
3. Treatment of elective arch pathology is recommended to be performed in specialized centers providing open and endovascular cardiac and vascular surgery on site	I	с
31. It is recommended that endovascular aortic arch repair is performed in centers with adequate volume of and expertise in open and endovascular arch repair	I	с

Ascending/Arch open repair

Defining high risk for open arch repair

- Age > 70 years-old
- (Multiple) prior median sternotomies
- Chronic pulmonary disease GOLD 3-4
- Stage > IIIB Chronic kidney disease
- Congestive heart failure (EF<40%)
- Pulmonary hypertension/ R heart failure
- Symptomatic ischemic cardiomyopathy
- Cirrhosis
- Severe atheromatous debris
- Frailty

Zone 0 arch devices

Anatomical limitations for endovascular repair

- Short grafts or landing zones
- Excessively kinked ascending grafts (~30%)
- Aortic debris
- Tortuous/ angulated arch geometry
- Tortuous/ diseased access vessels
- Extensive dissection or diseased supra-aortic trunks

Multi-disciplinary team

- Rapid pacing
- Hemodynamic support
- Retrograde type A dissection
- Injury to aortic valve
- L ventricular perforation
- Inadvertent coverage of coronary arteries
- Arrhythmias
- Conversion to open repair

Single branch devices

- Less arch manipulations
- Potential for single branch cerebral protection
- High flow
- Cervical debranching CONS
 procedures
- Patency based on single vessel
- Retrograde configuration (Gore)
- Component separation/ endoleak (Nexus)

Gore® TAG® Thoracic Branch Endoprosthesis (TBE)

FDA approval, May 13, 2022 First U.S. implants, August 2022

Single branch devices

Cervical debranching

Cervical debranching

R carotid interposition graft R carotid-subclavian bypass

L carotid-subclavian bypass

Early complications

- Hematoma
- Wound Infection
- Nerve injury
 - Phrenic nerve
 - Vagus(recurrent laryngeal) nerve
 - Brachial plexus
- Thoracic duct injury (chyle or lymphatic leak)
- Horner syndrome
- Vessel injury/ dissection
- Jugular vein thrombosis
- Graft infection

Double and triple branch devices

- No cervical debranching
- Antegrade branches for innominate/ L carotid
- Potential for total percutaneous technique
- Sequential arch manipulation
- More complex cerebral protection
- Less forgiven to ascending graft kinks
- Wound complications with cervical incisions

Effect of landing zone location on stroke risk

From the Eastern Vascular Society

A meta-analysis on the effect of proximal landing zone location on stroke and mortality in thoracic endovascular aortic repair

Yuchi Ma, BS,^a Mishal S. Siddiqui, MBBS,^b Syed A. Farhan, MD,^a Francisco C. Albuquerque, MD,^a Robert A. Larson, MD,^a Mark M. Levy, MD,^a Josue Chery, MD,^c and Daniel H. Newton, MD,^a *Richmond, VA: and Karachi, Pakistan*

- 57 studies/ 22, 244 patients treated by TEVAR
- 30-day mortality:
 2.9-3.7% Zones 1-3
 9.3% Zone 0

Hybrid operating room set up

- Advanced imaging applications
 - On-lay fusion
 - Cone bean computed tomography
- Open surgical repair
- Anesthesia talk
 - IJ access
 - Arterial line
 - ACT monitoring
- EEG monitoring
- Mini cell saver
- CO2 flushing

for thoracic endovascular aortic repair involving the ao arch				
Class	Level	References		
	0			

Recommendation 5

Thank You!

Department of Cardiothoracic & Vascular Surgery

Info.ctvs@uth.tmc.edu
https://med.uth.edu/cvs/