Robotic valvular surgery

From skepticism to standard of care

Lourdes Pickens, MSN, APRN, ACNP-BC

WUTHeatik

Disclosure

- I have no disclosure, except that I work for 3 surgeons.

FiFUTHeath VicGovern Monnemortom Medical School

MENON Homis a hocular Instione

INTRODUCTION TO ROBOTIC VALVULAR HEART SURGERY

PRE OPERATIVE PLANNING

Objectives

도

EXPECTED OUTCOMES \& POSSIBLE COMPLICATIONS

WHAT WE NEED TO KNOW

History of the robot....

He who is fixed to a star does not change his mind.....Leonardo da Vinci

Why do Robotic Surgery?

CONS

- More expensive
- New platform - New risk
- Cumbersome for the staff, especially for the OR team

PROS

- Better visualization for the surgeon
- Better ergonomics
- Avoiding sternal incision
- Less post op discomfort
- Robotic surgery is the future

Minimally invasive or sternotomy approach in mitral valve surgery: a propensity-matched comparison
Marek Pojar ${ }^{\square}$, Mikita Karalko, Martin Dergel \& Jan Vojacek
Journal of Cardiothoracic Surgery 16, Article number: 228 (2021) | Cite this article

- Data from > $\mathbf{5 0 0}$ patients comparing mini invasive vs sternotomy
- 30 day mortality was similar
- No difference were seen in the incidence of:
- Stroke
- Surgical site infection
- Myocardial infarction
- Difference -> mini invasive approach fewer blood transfusions (59\% vs 76% in the conventional group; $\mathbf{p}=\mathbf{0 . 0 0 1)}$
- Re-operative for bleeding (3\% vs 9\%; $p=0.03$)
- Hospital cost?? Higher operative cost offset by lower post operative cost.

Table 3 Matched hospital costs (EUR)

From: Minimally invasive or sternotomy approach in mitral valve surgery: a propensity-matched comparison

	Matched Patients		
	MINI	STERNOTOMY	\boldsymbol{p}-value
Variable	$\mathbf{n}=\mathbf{1 5 8}$	$\mathbf{n}=\mathbf{2 2 5}$	
Total hospital costs	$11,828 \pm 6907$	$12,732 \pm 99,936$	0.48
Operative costs	5364 ± 1566	4778 ± 1920	$<\mathbf{0 . 0 0 1}$
llood products costs	$210(0-393)$	$316(109-545)$	$<\mathbf{0 . 0 0 1}$
Postoperative costs	$5051(3993-6532)$	$5905(1611-8301)$	$\mathbf{0 . 0 0 4}$

Hospital cost: Higher operative cost offset by lower post operative cost.

Valvular heart disease

Valvular heart disease prevalence by age

	<45 years (\%)	45 to 54 years $(\%)$	55 to 64 years $(\%)$	65 to years $(\%)$	years $(\%)$
AS	0.02	0.1	0.2	1.3	2.8
AR	0.2	0.1	0.7	1.0	2.0
MS	0.0	0.1	0.2	0.2	0.2
MR	0.5	0.1	1.0	6.4	9.3

AS: aortic stenosis; AR: aortic regurgitation; MS: mitral stenosis; MR: mitral regurgitation.

Original figure modified for this publication. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a populationbased study. Lancet 2006; 368:1005. Table used with the permission of Elsevier Inc. All rights reserved.

What about the patient(s) who do not qualify for transcatheter aortic valve replacement, mitral valve clip or balloon valvuloplasty

Pre operative planning: Steps to success

Goals

- Safety
- Address the pathology physiology without compromise

- Incision size and location

Guiding Principles: Robotic Surgery

- All patients CAN, though not all SHOULD
- Do the SAME operation
- Ensure a SAFE operation
- Leave with a SUCCESSFUL repair or replacement
****Patient selection is KEY****

Concomitant Procedures

- Possible
- ASD/PFO
- Ablation
- Myxoma
- Exclude (generally)
- CABG
- Aorta surgery
- REDO, prior thoracotomy

Pre operative Studies

- Is the patient symptomatic?
- Qualifying Echo (TTE or TEE)
- LHC vs CTA coronary
- EVERYONE Gets CT Chest/abdomen/pelvis
- Free of infection (check labs, UA, good history and PE, check dentation)

CT Chest / Abdomen / Pelvis

- Aortoiliac atherosclerosis

Key trap to avoid

- Femoral perfusion is not safe

Axillary access?

Clean CT scan

Less-Invasive Mitral Valve Operations: Trends and Outcomes From The Society of Thoracic Surgeons Adult Cardiac Surgery Database

James S. Gammie, MD, Yue Zhao, PhD, Eric D. Peterson, MD, MPH, Sean M. O'Brien, PhD, J. Scott Rankin, MD, and Bartley P. Griffith, MD
Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland; Duke Clinical Research Institute, Durham, North Carolina; and Centennial Medical Center, Vanderbilt University, Nashville, Tennessee

Background. The purpose of this study was to examine utilization and outcomes of less-invasive mitral valve (LIMV) operations in North America.

Methods. Between 2004 and 2008, 28,143 patients undergoing isolated mitral valve (MV) operations were identified in The Society of Thoracic Surgeons Adult Cardiac Surgical Database (STS ACSD). The LIMV operations were defined as those performed with femoral arterial and venous cannulation.
Results. The LIMV operations increased from 11.9% of MV operations in 2004 to 20.1% in 2008 ($p<0.0001$). In $2008,26 \%$ of STS ACSD centers performed at least one LIMV operation, with a median of 3 per year. Patients in the LIMV group were younger and had fewer comorbidities. Median perfusion (135 versus 108 minutes) and cross-clamp times (100 versus 80 minutes, $p<0.0001$) were longer in the LIMV group. Mitral valve repair rates
were higher in the LIMV group (85% versus $67 \%, p<$ 0.0001). Adjusted operative mortality was similar (odds ratio 1.13, 95% confidence interval: 0.84 to $1.51, p=0.47$). Blood transfusion was less common (odds ratio 0.86, 95\% confidence interval: 0.76 to $0.97, p<0.0001$) while stroke was more common (OR 1.96, 95\% confidence interval: 1.46 to $2.63, p<0.0001$) in the LIMV group.

Conclusions. In selected patients, LIMV operations can be performed with equivalent operative mortality, shorter hospital stay, fewer blood transfusions, and higher rates of MV repair than conventional sternotomy. However, perfusion and cross-clamp times were longer, and the risk of stroke was significantly higher. Beating- or fibrillatingheart LIMV techniques are associated with particularly high risks for perioperative stroke.
(Ann Thorac Surg 2010;90:1401-10)
© 2010 by The Society of Thoracic Surgeons

Atherosclerosis

76 YO Female with severe primary MR, wanted robotic mitral valve repair

Asymptomatic, no other major cardiac history
No obstructive CAD on cath

PERFECT ECHO, BUT..........

Contra-indications to Robotic surgery (not

 absolute contra-indication)- Elevated hemidiaphragm
- Connective tissue disorder
- Previous right thoracotomy
- Ascending aorta > 4.0 cm
- Severe MAC
- STS > 4
- Pectus excavatum
- Previous sternotomy

Intra-op set up

Intra-op set up

Intra-op set up

INCISION LOCATION

Intra-op set up

12 millimeters is equivalent to
 0.47244094488189 inches

Sizes of Modern U.S. Coins

Half Dollar
Dollar

Post Operative Consideration

- Unilateral lung pulmonary edema (UPE)
- Prolonged aortic clamping associated with CPB times is one of the major risk factors for UPE.
- ICU -> iN.O.
- High flow O2/Vapotherm
- Lasix
- Arrhythmias
- Atrial fibrillation
- PPM

Post operative consideration

- Inotropes/pressors
- Fluid overload
- Pain

SPOTLIGHT: Cryo Nerve Block for Pain Management
Therapy Ovariow

Grown Drivers

- St artpiajet it innofere-polte.

If you are curious, here is a picture of a normal aortic valve

And here is a picture of a stenotic aortic valve that is bicuspid with
calcified leaflets

THANK YOU!!

f(ロ) UTCVSurgery
info.ctvs@uth.tmc.edu https://med.uth.edu/cvs/

4h. UTHealth \mid McGovern

References

