Surgical Treatment of Carotid Disease
The Old, the New, and the Future

Sophia Khan
Vascular Surgery Fellow
Division of Vascular and Endovascular Surgery
Department of Cardiothoracic and Vascular Surgery
The University of Texas Health Science Center at Houston (UTHealth)
Memorial Hermann Heart & Vascular Institute

McGovern Medical School / The University of Texas Health Science Center at Houston

Department of Cardiothoracic & Vascular Surgery
Disclosures

- None
Epidemiology

- Stroke is the 4th most common cause of death in the US in 2010
- Approximately 800,000 strokes occur every year
- 35% of which resulted in death and severe disability
- Extracranial cartoid disease represents the most preventable cause of ischemic stroke
Risk Factors

- HTN
- Smoking
- Hyperlipidemia
- Diabetes
- Age
- Males
- Family History
Pathophysiology of a Stroke

Image credit: Rutherford's Vascular Surgery
Treatment Options

- **Medical Management**
 - Aspirin, Plavix, Statin
 - Optimal blood pressure control

- **Surgical Intervention**
 - Carotid Endarterectomy (CEA)
 - Carotid Artery Stenting (CAS)
 - Trancarotid Revascularization (TCAR)
When to Operate?

ACAS
- 39 Medical Centers
- 1,662 Patients
- Risk of ipsilateral stroke over 5 years
 - Medical: 11%
 - Surgical: 5.1%
When to Operate?

ACAS

- 39 Medical Centers
- 1,662 Patients
- Risk of ipsilateral stroke over 5 years
 - Medical: 11%
 - Surgical: 5.1%

Surgery for Asymptomatic Patients >60% stenosis
When to Operate?

ACAS
- 39 Medical Centers
- 1,662 Patients
- Risk of ipsilateral stroke over 5 years
 - Medical: 11%
 - Surgical: 5.1%

NASCET
- 50 Medical Centers
- 659 Patients
- Risk of ipsilateral stroke at 2 years
 - Medical: 26%
 - Surgical: 9%

Surgery for Asymptomatic Patients >60% stenosis
When to Operate?

ACAS
- 39 Medical Centers
- 1,662 Patients
- Risk of ipsilateral stroke over 5 years
 - Medical: 11%
 - Surgical: 5.1%

NASCET
- 50 Medical Centers
- 659 Patients
- Risk of ipsilateral stroke at 2 years
 - Medical: 26%
 - Surgical: 9%

Surgery for Asymptomatic Patients >60% stenosis

Surgery for Symptomatic Patients >50% Stenosis
Carotid Endarterectomy

Image credit: Northern Sydney Vascular Website
Post-Operative Management

- Most patients go to a monitored bed postoperatively
- Neuro exams every few hours in the immediate post-operative period
 - Should include motor strength in bilateral extremities, smile, and sticking out their tongue
Complications

- Stroke
 - 1-2%

- Nerve Injury
 - Most common complication
 - 5-20% in most retrospective studies

- Myocardial infarction
 - 25-50% of all perioperative deaths

- Hyperperfusion syndrome
 - Infrequent but carries 75-100% mortality
Long-Term Results

- CEA has been proven to provide excellent long-term clinical and anatomic results
- 5-year stroke free survival reported to be 92-96%
- Durable intervention
Carotid Artery Stenting

- 1989 first balloon-expandable stent was deployed in the carotid artery
- Development of cerebral protection devices
- Carotid Artery Stenting deemed a feasible alternative to CEA
- Proponents: simple, quick, minimally invasive
Pitfalls of Carotid Artery Stenting

- Embolization during unprotected catheterization of the aortic arch and supra-aortic vessels
- Suboptimal embolic protection during CAS
So what are people doing?

- The 2013 National Inpatient Sample suggests that 85% of carotid patients undergo CEA and 15% of patients undergo carotid stenting.
- No consensus regarding widespread adoption of CAS.
- CAS has consistently demonstrated higher overall peri-procedural stroke rates.
CREST Trial

- Largest randomized trial comparing outcomes of CEA vs. CAS
- No significant difference in the 4-year rates of primary end point
- Stroke is more common after CAS
- MI is more common after CEA
- Long lesion length, sequential lesions, severe distal tortuosity, narrow mouth ulcers confer high procedural stroke risk of CAS
CREST Trial

- Largest randomized trial comparing outcomes of CEA vs. CAS
- No significant difference in the 4-year rates of primary end point
- **Stroke is more common after CAS**
- MI is more common after CEA
- **Long lesion length, sequential lesions, severe distal tortuosity, narrow mouth ulcers confer high procedural stroke risk of CAS**
Putting it all together...

1. High risk patient population that would not tolerate a CEA
2. Minimally invasive approach that may have a higher stroke rate
3. CEA remains the primary procedure even for patients with increased surgical risk
What it all means…

- High-risk patients requiring carotid revascularization constitute an unmet clinical need
What if?

- There was an approach that had a low stroke rate and was minimally invasive
What if?

- There was an approach that had a low stroke rate and was minimally invasive

- This is where transcarotid revascularization comes into play.
Houston Firsts
ROADSTER Study Design

- A prospective, single arm, multicenter clinical trial of the ENROUTE Transcarotid Neuroprotection System

- **Primary** endpoint: Composite of all stroke, death, and myocardial infarction at 30 days
Results

- 208 patients enrolled at 18 sites
 - 67 lead in cases
 - 141 pivotal cases
 - 105 asymptomatic
 - 36 symptomatic
Major Adverse Events

Table VIII. Hierarchical presentation of the major adverse event (MAE) rate for the intention to treat (ITT) population

<table>
<thead>
<tr>
<th>Parameters and statistics</th>
<th>ITT population (N = 141)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients who experienced an MAE, No. (%)</td>
<td>5 (3.5)</td>
</tr>
<tr>
<td>Exact binomial, 95% CI</td>
<td>1.16-8.08</td>
</tr>
<tr>
<td>(P) value</td>
<td>.0047</td>
</tr>
<tr>
<td>Events ≤30 days of the index procedure</td>
<td></td>
</tr>
<tr>
<td>Patients who died, No. (%)</td>
<td>2 (1.4)</td>
</tr>
<tr>
<td>Patients who had a stroke, No (%)</td>
<td>2 (1.4)</td>
</tr>
<tr>
<td>Patients who had an MI, No. (%)</td>
<td>1 (0.7)</td>
</tr>
</tbody>
</table>

CI, Confidence interval; MI, myocardial infarction.

Defined as stroke, death, myocardial infarction.
Major Adverse Events

- All stroke rate in the pivotal group was 1.4% (2 of 141)
- Stroke and death rate was 2.8% (4 of 141)
- Stroke, death and MI was 3.5% (5 of 141)
Discussion

- CREST: CEA had an MI rate of 2.3% and CAS of 1.1%
 - TCAR: 0.7% MI rate
- CREST: CEA had a stroke and death rate of 2.6%
 - TCAR: 2.8% stroke and death rate
Discussion

- CREST: CEA had an MI rate of 2.3% and CAS of 1.1%
 - TCAR: 0.7% MI rate
- CREST: CEA had a stroke and death rate of 2.6%
 - TCAR: 2.8% stroke and death rate

TCAR matches MI rate of CAS and stroke/death rate of CEA
The Future

- Can minimally invasive be even more minimally invasive?
- Newer stents and devices
- Completely percutaneous procedures