4D CT of Bioprosthetic Valves: Should all patients be on anticoagulants?

Raj R. Makkar, MD
Associate Director of Cedars Sinai Heart Institute
Director, Interventional Cardiology and Cardiac Catheterization Laboratories
Steven Corday Chair in Interventional Cardiology
Professor, David Geffen School of Medicine at UCLA
Disclosure Statement of Financial Interest

No conflicts of interest
Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

NEJM 2015
Background
A finding of severely reduced leaflet motion noted in 2 patients in the early part of the Portico IDE study

![Image of cardiovascular structure]
Study population (n=187)

- Portico IDE study
 - 1:1 randomization of high risk patients between Portico and Commercial valve
 - 55 CT scans analyzed at 30 days prospectively (Sapien XT, Portico and CoreValve)

- RESOLVE registry (NCT02318342) at Cedars-Sinai Heart Institute
 - Real world registry
 - 70 CT scans at multiple time points after TAVR and SAVR

- SAVORY registry (NCT02426307) at Rigshospitalet, Copenhagen
 - Real world registry
 - 62 CT scans at multiple time points after TAVR and SAVR

- Core lab analysis of all CT scans. Echo core lab for Portico IDE.
Results I

Prevalence of possible subclinical leaflet thrombosis

• The Portico IDE had reduced leaflet motion present in 22/52 (40.0%) of patients
 16/37 (43.2%) Portico, 6/14 (42.9%) Sapien XT and 0/4 (0%) CoreValve

• The registries (RESOLVE and SAVORY) had reduced leaflet motion in 17 of 132 patients (13%).
 7/58 (12.1%) Sapien/XT/S3, 2/24 (8.3%) Corevalve, 1/8 Lotus (12.5%), 2/27 SAVR (7.4%)
Volume rendered CT images of bioprosthetic valves

Normal leaflets

Thickened leaflets with thrombus

Systole

Diastole
Reduced leaflet motion was observed in all valve types including surgical bioprostheses.
Results II: Role of TTE
This finding was invariably missed on TTE, which demonstrated normal transvalvular gradients.

Day 1 mean gradient = 9 mmHg
Day 30 mean gradient = 9 mmHg

Portico IDE gradients in patients with and without reduced leaflet motion
Results III: Role of TEE

There was 100% concordance in the assessment of leaflet motion between TEE and 4D VR-CT in 10 out 22 patients with reduced leaflet motion undergoing TEE
Results IV: Therapeutic warfarin vs. DAPT: Portico-IDE
Decreased incidence of subclinical leaflet thrombosis

0% vs. 55.0%, p=0.01

0/8
0.0%

55.0%
11/20

Therapeutic warfarin
DAPT
Results IV: Therapeutic warfarin vs. DAPT: Registries
Decreased incidence of subclinical leaflet thrombosis

0% vs. 29.0%, \(p=0.04 \)

<table>
<thead>
<tr>
<th>Therapeutic warfarin</th>
<th>DAPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/13</td>
<td>10/35</td>
</tr>
<tr>
<td>0.0%</td>
<td>29.0%</td>
</tr>
</tbody>
</table>
Results V: Natural history of this phenomenon

Anticoagulation was associated with resolution of thrombus and restoration of leaflet motion in 11 out of 11 patients

- Reduced leaflet motion on 30-day CT
- Patient was started on Warfarin
- Resolution of thrombus and restoration of leaflet motion on 7 month follow-up CT
Results V: Natural history of this phenomenon
Persistence of thrombus and reduced leaflet motion in 9 out of 10 patients without therapeutic anticoagulation

Persistent reduced leaflet motion on subtherapeutic warfarin (INR 1.1)
† One patient with normal leaflet motion died 111 days after valve implantation from congestive heart failure. Of the two deaths among patients with reduced leaflet motion, one was the result of a myocardial infarction 147 days after valve implantation and the other was the result of pneumonia 249 days after valve implantation.
‡ The myocardial infarction occurred 1 day after valve implantation and 27 days before computed tomography (CT) in the group with normal leaflet motion and 147 days after valve implantation and 114 days after CT in the group with reduced leaflet motion.
§ In the two patients with stroke, the event occurred 6 hours after TAVR (with CT performed 1 day after TAVR) in one patient and 1 day after TAVR (with CT performed 28 days after TAVR) in the second patient. The first patient had multiple risk factors for stroke, including atrial fibrillation and substantial spontaneous echo contrast in the left atrium on echocardiography during TAVR.

<table>
<thead>
<tr>
<th></th>
<th>Normal Leaflet Motion</th>
<th>Reduced Leaflet Motion</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTICO IDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients in study</td>
<td>33</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Death†</td>
<td>1</td>
<td>2</td>
<td>0.56</td>
</tr>
<tr>
<td>Myocardial infarction‡</td>
<td>1</td>
<td>1</td>
<td>>0.99</td>
</tr>
<tr>
<td>Stroke/TIA§</td>
<td>0</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>TIA</td>
<td>0</td>
<td>0</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

† One patient with normal leaflet motion died 111 days after valve implantation from congestive heart failure. Of the two deaths among patients with reduced leaflet motion, one was the result of a myocardial infarction 147 days after valve implantation and the other was the result of pneumonia 249 days after valve implantation.
‡ The myocardial infarction occurred 1 day after valve implantation and 27 days before computed tomography (CT) in the group with normal leaflet motion and 147 days after valve implantation and 114 days after CT in the group with reduced leaflet motion.
§ In the two patients with stroke, the event occurred 6 hours after TAVR (with CT performed 1 day after TAVR) in one patient and 1 day after TAVR (with CT performed 28 days after TAVR) in the second patient. The first patient had multiple risk factors for stroke, including atrial fibrillation and substantial spontaneous echo contrast in the left atrium on echocardiography during TAVR.
In the group with normal leaflet motion, one patient had a stroke 1 day after TA VR (with CT performed 35 days after TA VR). In the group with reduced leaflet motion, three patients had transient ischemic attacks: one that occurred 15 days after TA VR (with CT performed 39 days after TA VR), a second that occurred 239 days after TA VR (with CT performed 24 days after TA VR), and a third that occurred 147 days after TA VR (with CT performed 32 days after TA VR).

<table>
<thead>
<tr>
<th>Registries</th>
<th>Normal Leaflet Motion</th>
<th>Reduced Leaflet Motion</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients in study</td>
<td>115</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
<td>>0.99</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0</td>
<td>0</td>
<td>>0.99</td>
</tr>
<tr>
<td>Stroke/TIA¶</td>
<td>1</td>
<td>3</td>
<td>0.007</td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
<td>0</td>
<td>>0.99</td>
</tr>
<tr>
<td>TIA</td>
<td>0</td>
<td>3</td>
<td>0.002</td>
</tr>
</tbody>
</table>

¶ In the group with normal leaflet motion, one patient had a stroke 1 day after TAVR (with CT performed 35 days after TAVR). In the group with reduced leaflet motion, three patients had transient ischemic attacks: one that occurred 15 days after TAVR (with CT performed 39 days after TAVR), a second that occurred 239 days after TAVR (with CT performed 24 days after TAVR), and a third that occurred 147 days after TAVR (with CT performed 32 days after TAVR).
In conclusion, reduced aortic-valve leaflet motion occurred in patients with bioprosthetic aortic valves and was easily detected noninvasively by four-dimensional, volume-rendered CT. Therapeutic anticoagulation with warfarin, but not therapy with antiplatelet drugs, prevented and effectively treated this phenomenon. Better characterization of this observation is needed to determine its frequency and evaluate its clinical effect.
Uncertainty and Possible Subclinical Valve Leaflet Thrombosis

David R. Holmes, M.D., and Michael J. Mack, M.D.

<table>
<thead>
<tr>
<th>Table 1. Questions Raised by the Study by Makkar et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the true incidence of reduced aortic-valve leaflet motion? Is it device-specific, is it specific to transcatheter aortic-valve replacement (TAVR), or does it occur as frequently with surgical aortic-valve replacement?</td>
</tr>
<tr>
<td>Is reduced leaflet motion caused by thrombus formation on the leaflets? If so, is subclinical leaflet thrombosis related to the stent structure or to deployment strategies (e.g., undersizing or oversizing or other patient-specific factors)?</td>
</tr>
<tr>
<td>What does this abnormality mean clinically? How frequent are strokes or transient ischemic attacks in patients with this finding? Should the list of clinical events of potential concern be broadened to include valve durability, central aortic regurgitation, sudden death, or recurrent or unrelenting heart failure?</td>
</tr>
<tr>
<td>What is the natural history of the abnormality? When (and at what intervals) should it be evaluated, and does it play a role in premature structural valve deterioration?</td>
</tr>
<tr>
<td>What treatment strategy should be studied? If anticoagulation is presumed to be the most effective strategy, will adverse outcomes associated with bleeding result in more complications than this abnormality?</td>
</tr>
<tr>
<td>What is the most effective imaging approach for monitoring this abnormality? Is monitoring needed in all patients, and if so, when?</td>
</tr>
<tr>
<td>Does this issue need to be fully resolved before the expansion of Food and Drug Administration approval of TAVR for lower-risk patients?</td>
</tr>
</tbody>
</table>
Reduced Leaflet Motion in Bioprosthetic Aortic Valves — The FDA Perspective

John C. Laschinger, M.D., Changfu Wu, Ph.D., Nicole G. Ibrahim, Ph.D., and Jeffrey E. Shuren, M.D., J.D.

The FDA is mindful of the perceived and real complications associated with routine and possibly unnecessary applications of advanced or invasive imaging and with prolonged anticoagulation, especially in high-risk populations. However, the potential for increased risks of late adverse clinical events related to reduced leaflet motion or thrombosis warrants careful systematic investigation. The absence of evidence of temporally related adverse clinical sequelae of imaging-detected reduced leaflet motion suggests that additional bench and clinical testing can be carried out while normal clinical care continues under the currently approved indications for transcatheter or surgical placement of bioprosthetic aortic valves.

We at the FDA believe that the available clinical evidence supports the conclusion that these valves remain safe and effective and that findings to date concerning reduced leaflet motion have not changed the overall favorable benefit–risk balance for these valves when they are used for their approved indications. These devices reduce symptoms, improve quality of life, and save and prolong the lives of appropriately selected patients. This view is supported by the favorable observed benefit–risk profile and the durability data obtained over the past 30 years for the currently approved surgically implanted bioprosthetic aortic valves.
Transcatheter valve thrombosis

• Trepels et al. Circulation 2009
 – First report of Edwards-SAPIEN thrombosis
• Lancellotti et al. Circulation: Cardiovascular Interventions 2013
 – First report of CoreValve thrombosis
• Pache et al. European Heart Journal 2013
 – First report of subclinical TAVR thrombosis
Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves

Gregor Pache¹*, Simon Schoechlin², Philipp Blanke³, Stephan Dorfs², Nikolaus Jander², Chesnal D. Arepalli³, Michael Gick², Heinz-Joachim Buettner², Jonathon Leipsic³, Mathias Langer¹, Franz-Josef Neumann², and Philipp Ruile²

Prevalence of hypoattenuating lesions
10% (16/156 patients)

EHJ 2015
• 405 patients with Sapien-XT or Sapien 3 valve undergoing MDCT
• Prospective gated CT scan using 2nd generation CT scanner
• Echocardiograms performed 1-3 months and 12 months post-TAVR

• THV thrombosis noted in 28/405 (7%) patients
• Subclinical leaflet thrombosis 23/405 (5.7%)
• Clinical leaflet thrombosis 5/28 (1.2%)
• 405 patients with Sapien-XT or Sapien 3 valve undergoing MDCT
• Echocardiograms performed 1-3 months and 12 months post-TAVR
• THV thrombosis noted in 28/405 (7%) of patients

Risk of THV thrombosis was lower in patients on warfarin, compared to those not on warfarin

1.8% vs. 10.7%
RR 6.09, 95% CI 1.86-19.84
• 405 patients with Sapien-XT or Sapien 3 valve undergoing MDCT
• Echocardiograms performed 1-3 months and 12 months post-TAVR
• THV thrombosis noted in 28/405 (7%) of patients

Treatment with warfarin resulted in resolution of THV thrombosis and normalized THV function in 85% of patients
Thrombus Formation Following Transcatheter Aortic Valve Replacement

Histopathology findings in 3 cases of TAVR valve thrombosis

Thrombus develops primarily on the aortic side of the valve leaflets

De Marchena E. et al. JACC: Cardiovascular Interventions 2015
Very Late Thrombosis of a Transcatheter Aortic Valve-in-Valve

Valve thrombosis 4 years post-TAVR
Very Early Thrombosis of Sapien 3 Valve

Sapien3 valve thrombosis 3 days post-TAVR

Valve thrombosis

Resolution with anticoagulation

Neylon A. et al. JACC: Cardiovascular Interventions 2016
Subacute Transcatheter CoreValve Thrombotic Obstruction
Patrizio Lancellotti, Marc A. Radermecker, Sara H Weisz and Victor Legrand
Three Cases of Early Lotus Valve Thrombosis

Salido-Tahoces L et al. JACC: Cardiovascular Interventions 2016
46 cases (12%) of bioprosthetic valve thrombosis out of 397 consecutive explanted bioprosthetic valves

Predictors of bioprosthetic valve thrombosis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total Score</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 50% mean gradient increase</td>
<td>1</td>
<td>45</td>
<td>89</td>
<td>68</td>
<td>77</td>
</tr>
<tr>
<td>B. Increase cusp thickness</td>
<td>1</td>
<td>74</td>
<td>69</td>
<td>55</td>
<td>84</td>
</tr>
<tr>
<td>C. Abnormal cusp mobility</td>
<td>1</td>
<td>63</td>
<td>70</td>
<td>51</td>
<td>81</td>
</tr>
<tr>
<td>D. Paroxysmal AF</td>
<td>1</td>
<td>63</td>
<td>73</td>
<td>54</td>
<td>80</td>
</tr>
<tr>
<td>E. Subtherapeutic INR</td>
<td>1</td>
<td>30</td>
<td>92</td>
<td>67</td>
<td>73</td>
</tr>
</tbody>
</table>

Combination of variables

<table>
<thead>
<tr>
<th>Combination of variables</th>
<th>Total Score</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>2</td>
<td>86</td>
<td>57</td>
<td>50</td>
<td>89</td>
</tr>
<tr>
<td>A, B, and C</td>
<td>3</td>
<td>72</td>
<td>90</td>
<td>78</td>
<td>87</td>
</tr>
<tr>
<td>A, B, C, and D</td>
<td>4</td>
<td>70</td>
<td>94</td>
<td>87</td>
<td>86</td>
</tr>
<tr>
<td>A, B, C, D, and E</td>
<td>5</td>
<td>66</td>
<td>93</td>
<td>85</td>
<td>89</td>
</tr>
</tbody>
</table>

Egbe A. et al. JACC 2015
46 cases (12%) of bioprosthetic valve thrombosis out of 397 consecutive explanted bioprosthetic valves

- Valve thrombosis (n=46)
- Matched cases of valve degeneration (n=92)

BPVT referred for surgical intervention occurs significantly earlier than BPV degeneration

Egbe A. et al. JACC 2015
Bioprosthetic Valve Thrombosis Versus Structural Failure
Clinical and Echocardiographic Predictors

Mayo Clinic experience

46 cases of bioprosthetic valve thrombosis

BPVT referred for surgical intervention occurs significantly earlier than BPV degeneration

Egbe A et al. JACC 2015
Association of warfarin therapy with clinical events after bioprosthetic AVR: Danish Registry

4075 patients undergoing bioprosthetic AVR in the Danish Registry

Discontinuation of warfarin treatment within 6 months after bioprosthetic AVR associated with worse outcomes

Merie C. et al. JAMA 2012
Discontinuation of warfarin treatment within 6 months after bioprosthetic AVR associated with worse outcomes

Increased strokes

Increased thromboembolic events

Merie C. et al. JAMA 2012
Association of warfarin therapy with clinical events after bioprosthetic AVR: STS database

25,656 patients undergoing bioprosthetic AVR at 797 hospitals in the STS database

Warfarin plus aspirin associated with a reduced risk of death and embolic events, compared to aspirin alone

Brennan M. et al. JACC 2012
The addition of warfarin to aspirin at hospital discharge would be a reasonable treatment option, on the basis of these results, with an expected number needed to avert 1 death of 153 patients and 1 embolic event of 212 patients. The therapeutic benefit observed with the addition of warfarin to aspirin was not without risk in this elderly cohort, and 1 additional bleeding event was observed at 3 months for every 55 patients treated with warfarin.

Brennan M. et al. JACC 2012
15 cases of TAVR valve thrombosis reported from 12/02-03/14
14 symptomatic
1 subclinical

Median time to THV thrombosis: **181 days**

Median time to resolution of thrombus with anticoagulation: **39 days**

Multicenter, multinational registry of patients with TAVR thrombosis
26 out of 4266 patients undergoing TAVR (0.61%)

All cases had clinical evidence of valve thrombus
- 17/26 (65.4%) had worsening dysnea on exertion
- 1/26 (3.8%) presented with NSTEMI
- 24/26 (92%) patients had elevated gradients

Unknowns

- Clinical impact
- Natural history of this finding
- Routine anticoagulation post-TAVR?
- Surgical AVR vs. TAVR prevalence
- NOACs vs. VKA
- Does this finding recur after cessation of anticoagulation?
- Does short term anticoagulation post procedure prevent this finding in the long term?
Should we treat Leaflet Thrombosis?

• Should we treat symptomatic leaflet thrombosis?
 Definitely YES

• Should we treat asymptomatic leaflet thrombosis?
 Yes—we treat thrombus in other location why not here,
 may be too late to find out if it affects valve durability,
 there is a signal for TIAs

 No—there is no definite impact on outcomes yet, risk of
 bleeding may not be trivial. We need to elucidate this
 phenomenon better.
Should we routinely do CTs on all patients post TAVR?

- Best done systematically in research protocols with the involvement of imaging experts
- Radiation and contrast use may be an issue
- What would we do with the information in patients who are not candidates for anticoagulation?
- There should be low threshold to image in patients with suspected valve dysfunction, thrombo-embolic events
RESOLVE Study (NCT02318342)

• Ongoing, multicenter registry being expanded to 1000 patients post-TAVR/Surgical AVR
• Corelab analysis of contrast CT scans
• Corelab analysis of echocardiograms
• Contact:
 – makkarr@cshs.org
CLASS IIa

1. Aspirin 75 mg to 100 mg per day is reasonable in all patients with a bioprosthetic aortic or mitral valve (271–274). *(Level of Evidence: B)*

CLASS IIb

1. Anticoagulation, with a VKA, to achieve an INR of 2.5 may be reasonable for the first 3 months after bioprosthetic AVR (276). *(Level of Evidence: B)*

2. Clopidogrel 75 mg daily may be reasonable for the first 6 months after TAVR in addition to life-long aspirin 75 mg to 100 mg daily. *(Level of Evidence: C)*

Nishimura R. et al. JACC 2014
• Late bleeding defined as major bleeding ≥30 days post-TAVR
• 2,401 patients undergoing TAVR and surviving to 30 days in PARTNER 1 trial and registries
• Major bleeding in 142 (5.9%) patients

Late bleeding associated with increased 1-year mortality

Genereux P. et al. JACC 2014
GALILEO (Global multicenter, open-label, randomized, event-driven, active-controlled study comparing a rivaroxaban-based antithrombotic strategy to an antiplatelet-based strategy after transcatheter aortic valve replacement (TAVR) to optimize clinical outcomes will compare rivaroxaban-based)

1520 patients after successful TAVI procedure

- Rivaroxaban 10 mg OD and Aspirin 75-100 mg OD
 - Drop of aspirin
 - Rivaroxaban 10 mg OD

- Clopidogrel 75 mg OD and Aspirin 75-100 mg OD
 - Drop of clopi
 - Aspirin 75-100 mg OD

Primary end-point is death, MI, stroke, non-CNS systemic emboli, symptomatic valve thrombosis, deep vein thrombosis or pulmonary embolism, major bleedings over 720 days of treatment exposure.
ATLANTIS (Anti-Thrombotic Strategy to Lower All cardiovascular and Neurologic Ischemic and Hemorrhagic Events after Trans-Aortic Valve Implantation for Aortic Stenosis)

1509 patients after successful TAVI procedure

- Stratum 1
 Indication for OAT
 - VKA
- Stratum 2
 No indication for OAT
 - Apixaban 5mg bid* (2.5mg bid if creatinine clearance 15-29mL/min or if two of the following criteria: age >80 years, weight <60kg or creatinine >1.5mg/dL (133µMol).)
 - DAPT/ SAPT

Primary end-point is a composite of death, MI, stroke, systemic emboli, intracardiac or bioprosthesis thrombus, episode of deep vein thrombosis or pulmonary embolism, major bleedings over one year follow-up.
ENVISAGE TAVI AF – Design Overview

PROBE design: prospective, randomized, open label, blinded evaluation Edoxaban based regimen vs VKA based regimen in N ≥ 1400 AF patients (≥ 2500 patient-years)

TAVI
- w/o severe complications at randomization
- between 24 h and 5 days

Randomize
- Edoxaban 60 mg/day*
 - +/- antiplatelet therapy (APT)***
 - time to first dose of OAC ≤ 24h
- Vitamin K Antagonist**
 - +/- antiplatelet therapy (APT)***

Minimum 12 months treatment, event driven (6 months for last pts enrolled)

* Edoxaban dose reduction to 30 mg
 - if CrCL ≤ 50 ml/min
 - BW ≤ 60 kg
 - certain P-gp inhibitors

** VKA pre-defined by country, target INR 2-3

*** Clopidogrel 75mg OD or ASA 75 - 100 mg OD, Pre-declare APT type before
 - APT stratified by study center (SAPT, DAPT allowed for 1 month post stenting in select cases)
 - Without stenting: no APT at all or either ASA for 3 months only or Clopidogrel for 3 months only (other P2Y12 are permissible)
 - With stenting for atherosclerotic disease: ASA or Clopidogrel up to 12 months

David Capodanno. TCT 2016

NCT02943785
Subclinical leaflet thrombosis

- This is a real finding
- This finding occurs frequently
- This finding is noted in multiple valve types
- This finding is less frequent in patients on anticoagulation
- This finding resolves with the initiation of anticoagulation
- The impact of this finding on clinical outcomes requires further studies
The GALILEO Trial
CTA and MRI Substudies

- N = 300 patients; 1 CTA done at 3 months

- Primary endpoint: rate of patients with at least one prosthetic leaflet with > 50% motion reduction as assessed by cardiac 4DCT-scan at 3 months after TAVR

- Will test superiority of rivaroxaban-based versus clopidogrel-based strategy

- Secondary endpoints include leaflet thickening, echocardiographic variables (mean gradient and EOA) and functional NYHA status.

GALILEO MRI Substudy EARTH

- N = 100 patients

- Primary endpoint: TLV (mm3) assessed with DW-MRI at 3 months

- Will test superiority of rivaroxaban-based versus clopidogrel-based strategy

- DW-MRI also performed pre-TAVR and post-TAVR (both in-hospital) for the 2ary endpoint of periprocedure embolization

NCT02556203
My perspective

• We started with a finding that we thought was an imaging artifact. We have established that this is a real finding. We have also established with a reasonable, but not unquestionable certainty, that this may be related to leaflet thrombosis.
• There is no conclusive evidence regarding the clinical significance of this finding. This requires longer and larger adequately powered studies in lower risk patients with fewer comorbidities.
• In appropriate clinical situations (elevated gradients, worsening heart failure, stroke/TIA, MI and other clinical situations concerning for embolic phenomenon), CT imaging should be performed to rule out leaflet thrombus.
My perspective

• A case for routine CT scanning in clinical practice cannot be made at this time but more centers need to get involved in learning and using CT. Will routine 90 day CT be justified in young low risk patient in the future?
• Similarly, routine anticoagulation in all patients post-TAVR cannot be recommended, given the high risk of bleeding in the current TAVR population and the uncertain clinical significance of this finding BUT we are moving to lower risk patients where an argument could be made.
• These findings provide a sound rationale for some of the planned studies with different antithrombotic regimens post-TAVR and question current guidelines of dual antiplatelet therapy. Imaging should be incorporated in some of the planned pharmacologic studies.
My perspective

Adoption/expansion of TAVR should primarily be guided by large randomized trials/registries focused on clinical outcomes.
67 y/o male physician s/p TAVR with 29mm Sapien3 valve

Worsening shortness of breath 4 months post-TAVR
Transvalvular gradients elevated from 10 mmHg to 23 mmHg

Day 1 TTE
Gradient 10mmHg

4 months post-TAVR
Gradient 23mmHg
Leaflet thickening and restricted leaflet motion noted on 4D VR-CT
Leaflet motion restored following anticoagulation with warfarin (INR 2-3)

Repeat CT performed after 3 months

Resolution of symptoms with anticoagulation
Normalized transvavular gradients with anticoagulation (warfarin, INR 2-3)
Repeat TTE performed after 3 months

Resolution of symptoms with anticoagulation

Pre-anticoagulation
Gradient 23mmHg

Post-anticoagulation
Gradient 11mmHg
Should all TAVR valves be anticoagulated?

No, BUT…

• The high resolution CT imaging data are intriguing and highlight the importance of anticoagulants rather than antiplatelet agents in the genesis of leaflet thrombosis.

• Currently majority of patients being treated with TAVR are old and are considerable risk of bleeding but argument could be stronger as TAVR moves to low risk and younger patients.

• Ongoing clinical trials in TAVR will guide our practice but may not be definitive in low risk patients who are not in current studies.

• Clinical vigilance complemented by CT/Echo imaging is prudent.